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Introduction

Laboratory studies have been conducted for two years investigating the potential for in situ

bioremediation of contaminated soils and groundwater at the Naval Air Station (NAS) Patuxent

River fuel farm. The research has been carried out by Battelle Columbus Laboratories, Skidaway

Oceanographic Institute, Groundwater Technology, Inc., and the University of Nevada, Reno. In

addition, field site assessment has been provided by IT Corporation and Eureka Detection

Services. The data obtained during site assessment, laboratory research, and field pilot studies will

be used to design in situ soil and groundwater treatment processes.

The contamination at the fuel farm consists of a complex mixture of aromatics, alkyl

aromatics, straight-chain aliphatics, and branched-chain aliphatics. Total petroleum hydrocarbon

(TPH) concentrations to 20,000 mg/Kg soil have been documented at the site.

The in situ biological treatment of soils and groundwater is based on the addition of

nutrients and oxygen to the contaminated system. Nutrient addition stimulates the endemic

microbial population resulting in increased biomass with a corresponding ability to metabolize

xenobiotics. The microbial transformation of hydrocarbons involves the incorporation of oxygen

into the molecule by the use of the oxygenase enzymes. The metabolic process converts the

substrate into alcohol, aldehyde, and carboxylic acid intermediates (Alexander, 1977). Once a

carboxylic acid is formed, the substrate can enter beta oxidation, which results in the loss of two of

the carbons as acetyl-CoA, which is then used for energy and microbial synthesis.

Factors that control the in situ biological treatment of soils and groundwater include the

concentration and availability of a terminal electron acceptor, mass transfer, nutrient availability, -.

the biorefractory properties of contaminants, and contaminant toxicity. Oxygen is the most
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common terminal electron acceptor, it is supplied by the injection of compressed air, pure oxygen,

or stabilized hydrogen peroxide.

Factors related to the refractory properties of contaminants and their susceptibility to

heterotrophic degradation include molecular structure (McKenna, 1977; Atlas, 1984) and

microbial species and density (Brock, 1970; Wiggins et al., 1987; Novak et al., 1984; Heitkamp,

1987). Nonbiological factors that affect hydrocarbon degradation are temperature and pH

(Alexander, 1977), water solubility (Wodzinski et al., 1972; Alexander, 1985; Thomas et al.,

1986), soil adsorption (Alexander, 1985; McCarty et al., 1984), and enzymatic inhibition by soil

material (Alexander, 1973).

Contaminants and their metabolites may exhibit microbial toxicity and, therefore, prevent or

inhibit growth of heterotrophic organisms (Wiggins et al., 1987). For example, Alexander (1979)

stated that hydrocarbon metabolites can be more toxic to microorganisms than the parent

compound. Stumm-Zollinger (1968) concluded that a substrate or its metabolites may inhibit

microbial anabolic processes.

In its most general sense, toxicity can be defined as the imparting of a deleterious effect,

whether lethal or sublethal, to an organism, population, or community. The toxic effect can result

in a permanent perturbation such as the destruction of the microbial community. However, not all

effects are disruptive, and there exist adaptive mechanisms, both at the cellular level (e.g.,

detoxifying enzyme systems) and at the population and community levels (Capuzzo, 1981).

Toxic effects from petroleum exposure vary widely and for reasons that are not well

understood. The effects are complicated by the varying chemical composition of petroleum

products, in which even the same product (e.g., No. 2 fuel oil) refined at a separate location can

differ markedly. Laboratory studies have shown that individual aromatic hydrocarbons, unrefined
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petroleum, and fractions of petroleum induce a variety of cellular and subcellular alterations in

bacteria and invertebrates (Malins, 1982). Sublethal concentrations of oil can change the motile

behavior of unicellular organisms or alter metabolic processes that are closely allied with motility.

Several metabolic consequences have been suggested including inhibition of bacterial-mediated

nutrient regeneration and pollutant removal, disruption of intermicrobial predation, and prevention

of phenomena mediated by the settling of mobile microbes on surfaces (Mitchell and Chet, 1975).

Bacteria are repelled by several known components of petroleum including benzene,

aniline, and phenol; thresholds for detection average 10-4 M (Young and Mitchell, 1973; Tso and

Adler, 1974). Most repellents are cytotoxic at concentrations well above those which produce

negative chemotaxis. Bacteria detect chemical stimuli by specific protein chemoreceptors, some of

which double as active transport enzymes for the substrates with which they combine. The

resulting signal is transduced to the flagella via separate membrane-bound chemotaxis proteins

(MacNab, 1978). There is circumstantial evidence for the existence of highly specific membrane-

bound chemoreceptors in algal gametes as well. Chemotaxis can be inhibited by blocking

chemoreception, signal transduction, or the normal functioning of flagella. These processes

depend on the normal functioning of the cell membrane which, therefore, provides an accessible

target for the action of various petroleum hydrocarbons.

Positive chemotaxis functions to maintain bacterial cells in a nutritionally favorable

environment (Bell and Mitchell, 1972). Negative responses serve to remove cells from potentially

toxic conditions. Prevention of normal chemotactic behavior can inhibit this important contribution

to the general homeostatic mechanism of the bacterial cell and adversely affect microbial activity.

Exposure to petroleum may result in an initial reduction, or even inhibition, of many

aspects of native microbial activity including chemotaxis (Bartha and Atlas. 1977). However, oil

pollution creates a new set of selective environmental conditions which quickly results in the
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development of a hydrocarbon-based microbial community (Barsdate et al., 1980). This may

bring with it the development of certain resistances to the otherwise toxic effects of the

hydrocarbons as, for example, the carriage of plasmids with the ability to metabolize components

of oil (Hada and Sizemore, 1981). Bacteria isolated in the presence of petroleum hydrocarbons

have been found to exhibit normal chemotactic responses in the presence of these compounds

suggesting an underlying cellular resistance to their effects (Britton et al., 1979). These bacteria

may be more representative of the microbial populations which develop after environmental

releases of petroleum.

The first year of research investigating the optimum treatment conditions for the NAS

Patuxent River fuel farm showed negligible hydrocarbon degradation over 60 days with an initial

TPH concentration of 10,000 mg/Kg. In an attempt to explain the low biodegradation rates and to

optimize treatment of the site, the second year of research investigated the effect of TPH

concentration on the biodegradation rate of weathered petroleum in the NAS Patuxent River fuel

farm soil. This study was performed as part of the assessment of JP-5 contaminated soil from the

site to provide laboratory data to support field in situ bioremediation.

Methodology

Effect of petroleum concentration on biodegradation rates. Soil collected from

the NAS Patuxent River fuel farm was passed through a No. 4 (475mm) sieve to remove rocks

and to obtain a homogeneous sample. To investigate the effect of concentration, the contaminated

soil was mixed with uncontaminated silica sand to provide soil concentrations of 180, 490, 830,

and 1,570 mg/Kg TPH dry weight soil. Fifteen grams of soil were placed in 40 ml borosilicate

vials. The vials were then closed (teflon septa caps) and 5 ml of nutrient solution (Restore 375)

containing 200 mg/I stabilized H202 (IT Corporation) were added to provide excess nitrogen and

phosphorus (400 mg/I NH3-N and 20 mg/l P04-P). The concentration of oxygen in the head



space was monitored using a Gow-Mac 550 gas chromatograph with a thermal conductivity

detector. The oxygen concentration in the head space was correlated with the dissolved oxygen

concentration of the soil-water. Parameters included injection port temperature, 60°C; detector

temperature, 600 C; column temperature, 60oC; and helium carrier gas flow rate 65 ml/min. Soil-

water dissolved oxygen concent-ations were maintained at greater than 3 mg/l by the addition of

H202 to the systems through the teflon septa when necesssary. The vials were incubated on an

orbital shaker (Lab Line) at 200 rpm; the temperature was maintained at 200C.

Separate vials were analyzed at ten time intervals over 120 days. The soil slurries were

extracted with methylene chloride. The extract was analyzed using an HP 5890A gas

chromatograph with a flame ionization detector. A 15 m SPB-1 (Supelco) 0.53 mm capillary

column was used with an initial oven temperature of 40 0C, final oven temperature of 1900C, and

program rate of 70 /min. The injector temperature and detector temperature were 200°C and

2200C, respectively. The nitrogen gas carrier flow rate was 10 ml/min. Other analyses included

soil-water dissolved oxygen, pH, NH3-N, N03-N, N02-N, and P04-P (APHA, 1985).

Heterotrophic bacterial counts were determined by serial dilution and plate counts.(APHA, 1985).

The plates were incubated at 37 0 C for 36 hours.

Soil venting. Contaminated cuttings from Well 25 were placed in glass columns 22 cm

high and 6.2 cm in diameter. One hundred g of soil were placed in the column resulting in a soil

plug 10.2 cm high and 6.2 cm in diameter. Purified compressed air (600 ml/min) was passed

through the soil column. Soil venting was carried out for two weeks, with soil aliquots collected

every three days and analyzed for total petroleum hydrocarbon concentration and soil moisture

content.



Results and Discussion

Bacterial counts and total petroleum hydrocarbon (TPH) concentrations over the 120-day

experimental period for the four initial soil TPH concentrations are shown in Figures 1 through 4.

Incubation of samples with initial soil TPH concentrations of 180 and 490 mg/Kg resulted in

hydrocarbon loss to undetectable levels in 48 and 63 days, respectively. Bacterial-counts climbed

from 105 CFU/g to 107 CFU/g over 21 days; the counts then declined to initial numbers.

Samples with initial TPH concentrations of 830 and 1,570 mg/Kg showed 0 and 18 percent

TPH degradation over 120 days, respectively. Bacterial counts exhibited a logarithmic growth

phase occurring after a lag period. Bacterial numbers increased from 105 to approximately 107

CFU/g soil. The systems then entered a stationary growth period for 14 days followed by a

decrease in bacterial numbers to initial levels.

To evaluate the effect of the initial TPH concentration on soil treatment, specific growth

rates (Eq. 1) and specific substrate utilization rates (Eq. 2) were calculated for the logarithmic

growth phase in each system:

dX/dt = laX (1)

-(dS/dt)/X = kS (2)

where
dX/dt = microbial growth rate, CFU/g'd

t = specific growth rate, day- 1

X = bacterial counts, CFU/g

-(dS/dt)/X = specific substrate utilization rate, (mg/d)/(CFU/g)

k = first order rate constant, day - I

S = substrate concentration, mg/K
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Equation 2 is applied only to continuous flow stirred tank reactors (CFSTRs) in which

steady state substrate and biomass concentrations are established. In batch systems, the specific

substrate utilization rate may be approximated by normalizing k to the biomass concentration.

Because biomass increased during the batch experiments, k was normalized using the mean X

during the logarithmic growth phase. Estimated specific substrate utilization rates are therefore

reported as k/X (day-1/CFU/g).

Specific growth rates and estimated specific substrate utilization rates for the four initial

TPH concentrations are listed in Table 1. Factorial design analysis of variance (ANOVA) showed

that the population means for the four specific growth rates were not significantly different (a <__

0.05). However, ANOVA analysis showed that the estimated specific substrate utilization rates

declined as a function of inital TPH concentration (ct < 0.05).

Table 1. Logarithmic phase specific growth rates and estimated specific substrate utilization rates

for four initial TPH concentrations.
TPH Concentration Specific Growth Rate Specific Substrate

Utilization Rate
(mg/Kg) (day)-1  (day- 1/CFU/g)

180 0.047 1.03 x 10-6

490 0.052 5.4 x 10-7

830 0.093 0
1570 0.111 0

The mechanism of the concentration effect exhibited at TPH concentrations > 830 mg/Kg is

difficult to elucidate in such a complex system. Growth and heterotrophic metabolism were not

limited by dissolved oxygen, pH, or nutrients. The dissolved oxygen concentration in the systems

It)



was maintained at > 3 mg/i and the pH did not decrease below 6 (Figure 5). The concentrations of

the two primary nutrient additions, NH3-N and P04-P, decreased negligibily during the 120-day

treatment (Figures 6 and 7). Difficulties in treating hydrocarbons have often been attributed to the

biorefractory nature of some petroleum fraction (e.g., branched alkanes) (Wilson and Ward,

1987). However, a biorefractory residual did not remain after 48 and 61 days in the systems with

180 and 490 mg/Kg initial TPH concentrations, respectively. The decline in biomass with a

corresponding halt to biodegradation in the 830 and 1,570 mg/Kg TPH systems cannot be

attributed to a biorefractory fraction of the hydrocarbons, because a residual would have also

remained in the lower TPH systems. Therefore, the hydrocarbons in the soil at the NAS Patuxent

River fuel farm were not biorefractory under the conditions of the laboratory treatment.

The low degradation rates characteristic of the high TPH concentrations may be due to a

surface area phenomenon. Bacteria may not be physically capable of degrading hydrocarbons

when, at high concentrations, the substrate is present in water insoluble films and globules.

(Stucki and Alexander, 1987; Thomas et al., 1986).

The increase in biomass shown in Figures 3 and 4 must be attributed to the anabolism of a

carbon source. Microbial growth could result from the metabolism of naturally occurring soil

organic carbon or biologically available petroleum. Metabolism of petroleum is not apparent from

Figures 3 and 4, because an increase in biomass must correspond to a decrease in the TPH

concentration. However, the biodegradation of hydrocarbons may be masked by common

analytical procedures. Brown (1989) postulated that the increased number of microorganisms in

soil treatment systems releases biosurfactants which may increase the hydrocarbon extraction

efficiency. Such an increase in extraction efficiency in the shake flasks used in this resea-ch may

have masked TPH biodegradation over the first 49 days of treatment. Based on Brown's

hypothesis, postulated TPH concentrations are shown in Figures 8 and 9 for the 83() and 1.570

rngjKg initial measured TI-t concentrations, respectively. Regardless of the carbon source for
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microbial growth in the two high TPH systems, microbial counts began to decline to original levels

after 63 days leaving the final TPH residual at approximately 830 mg/Kg (for the 830 mg/Kg initial

concentration) and 1,260 mg/Kg (for the 1,570 mg/Kg initial concentration). If Brown's

hypothesis is correct, the most likely explanation of the laboratory treatment data is the production

of toxic metabolites as exponential growth proceeded. The toxicity would have then resulted in a

decline in bacterial counts and a halt to hydrocarbon degradation (Alexander, 1979).

Inhibition of metabolic processes due to high contaminant concentration has been

documented in other bioremediation studies. Hickman and Novak (1984) reported enzymatic

inhibition in the biological degradation of pentachlorophenol. Mitchell and Chet (1975) suggested

that microbial chemosensory attrition was inhibited by crude oil. Novak et al. (1985) reported that

methanol was biodegradable up to 1,000 mg/l, while tertiary buryl alcohol was not degraded at

concentrations greater than 100 mg/l. These studies lend support to possible toxicity of metabolites

produced during the first 49 days of treatment. Therefore, the most likely mechanisms causing the

concentration effect at high TPH concentrations were mass transfer limitations and/or toxicity and

subsequent metabolic inhibition of the hydrocarbon metabolites.

One difference between the results of this research and the results obtained in other

laboratory petroleum treatment studies is the reaction vessel used. This study used a closed, batch

system in which volatilization and dilution did not to occur. Many other petroleum

biodegradability studies have used systems open to the atmosphere (Jamison et al., 1975).

Volatilization is difficult to control in open systems; therefore, biodegradation rates may be

overestimated in systems open to the atmosphere. Continuous flow systems have also been used

for laboratory biodegradability studies (Vanloocke et al., 1975). The closed batch system used in

this study provides a more conservative estimate of field biodegradability because toxic metabolites

would not be removed as in a flow-through system.



To evaluate the potential of stimulating the biodegradation of petroleum with TPH

concentrations greater than 830 mg/Kg, the treatment experiments were repeated with a methanol

ammendment. Well cuttings (Well 23) containing 2,000 mg/Kg TPH were prepared in the same

manner as in the first experiment, but methanol was added to a final concentration of 10 mg/l in the

soil-water solution. Due to the high methanol biodegradation rate, 10 mg/l of methanol were also

introduced once per week over the 34-day treatment period. The pH was maintained above 6.0 by

the addition of 1 M NaOH when necessary.

Figure 10 shows the results of the treatment with methanol amendment. Microbial growth

immediately entered a logarithmic growth phase for 6 days then remained in a stationary phase for

the remainder of the experiment. Figure 10 shows that the methanol ammendment resulted in an

83% loss of TPH over the 34-day experimental period.

The specific growth rate and estimated specific substrate utilization rate for the methanol -

amended system were 0.87 day-1 and 2.28 x 10- 5 day- 1/(CFU/g), respectively. By factorial

ANOVA, these values are significantly greater than the specific growth rates and estimated specific

substrate utilization rates for the 830 mg/Kg and 1,570 mg/Kg TPH experiments. In addition,

bacterial counts were maintained at 107 CFU/g, which provided sufficient biomass for continued

metabolism throughout the 34-day experiment. The sustained growth in the methanol-ammended

system suggests that the toxicity of metabolites may not be the predominant mechanism for the

concentration effect at TPH concentrations > 830 mg/Kg. The increased growth rates and

substrate utilization rates may be due to increased solubility of hydrocarbons (i.e. a surfactan:

effect). Alternatively, a cometabolic or other biochemical mechanism associated with methanol

addition may have provided the necessary metabolic potential to enhance hydrocarbon treatment.

McCarty (1985) proposed the addition of an alternative carbon source to enhance the treatment of

some contaminants, partictilarly at low concentrations. The addition of methanol miav. therefore.
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offer potential for increasing biodegradation rates in the soil and groundwater at the NAS Patuxent

River fuel farm.

When considering in situ bioreclamation, the primary factors are cost and liability. Nyer

(1985) estimated that in situ biological treatment provides a five-fold cost savings and substantially

reduces future liabilities relative to excavation, removal, and disposal. In situ bioremediation,

combined with other treatment processes, has been successful in reducing organic contaminants in

groundwater (Lee et al., 1989). However, Healy and Daughton (1986), in reviewing the

bioremediation literature, argued that the positive results seen with in situ treatment may be

attributed to sampling errors, dilution, and physicochemical processes. Based on the results of this

research, high "rPH concentrations may also be a factor that significantly influences the efficacy of

in situ bioremediation.

Soil venting. Compressed air flow rates and soil temperatures during the course of the

soil venting experiments for the sandy soil and the peat soil collected from surface seeps at the

NAS Patuxent River fuel farm are shown in Figures 11 and 12, respectively. These data show that

the air flow rate was relatively constant at approximately 0.60 I/min and that the temperature was

uniform at 250C. Total petroleum hydrocarbon concentrations as a function of the volume of air

purged through the sand system are shown in Figure 13. These data show that greater than 83%

of the TPH were removed from the sandy soil to 310 mg/Kg TPH with 9,000 L of air. During the

venting process, approximately 1,500 mg/Kg of TPH were volatilized. Assuming a bulk density

of 1.2 g/cm 3 and porosity of 0.4 for the soil, the venting requirement for the sandy soil is 270,000

pore volumes. Residual TPH concentration and moisture during venting of the peat soil are shown

in Figure 14. These data show that the same percentage of hydrocarbons can be stripped from the

peat soil as the sandy soil, but air volume requirements were 294% greater at 26,500 L of air.
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Summary and Conclusions

Closed-system shake flask treatability experiments were conducted on NAS Patuxent River

soils contaminated with weathered products resulting from JP-5 jet fuel releases. The flasks

received nitrogen, phosphorus, and stabilized hydrogen peroxide additions and were incubated for

120 days at 20CC. Total petroleum hydrocarbon, nitrogen and phosphorus species, dissolved

oxygen, and peroxide concentrations, and pH were determined at ten times over the 120 days.

Soil venting was also investigated as a means of removing high TPH concentrations prior to

bioremediation. Two soils (sandy, organic) were purged with compressed air for two weeks.

Total petroleum hydrocarbon concentration, temperature, and moisture content were monitored

over the time of study. The following conclusions may be drawn from the study:

I. Estimated logarithmic phase specific substrate utilization rates for

hydrocarbon biodegradation decreased as a function of initial TPH concentration.

Specific growth rates were unaffected by initial TPH concentration.

2. Petroleum hydrocarbons in the NAS Patuxent River fuel farm were not

biorefractory under the laboratory treatment conditions.

3. The concentration effect during hydrocarbon treatment was attributed to mass

transfer limitations and/or toxicity of metabolites produced during the first 49

days of treatment.

4. The results of the treatment methodology developed through this research

provide a more conservative approach to hydrocarbon treatability compared to

other methodologies because volatilization, dispersion. and dilution are

minimized.
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5. Methanol amendment enhanced estimated specific substrate utilization rates

and specific growth rates. Methanol additions maintained plate counts in a

stationary phase; solubilization of the hydrocarbons may have also enhanced

biodegradation.

6. Greater than 83% of the TPH were removed from the sandy soil with 9,000 L

of air. The same percentage of hydrocarbons were stripped from the peat soil,

but air requirements were 294% greater.
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